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 不同协方差估计方法对比分析 
——华泰行业轮动系列报告之十 
本文分别基于模拟数据和真实数据实证了不同协方差估计方法的表现 

投资者通常采用样本协方差作为对真实协方差矩阵的估计，该方法需要估
计的参数众多，误差较大，为此学者们提出了包括稀疏矩阵、因子模型、
压缩估计在内的一系列改进算法。本文正是要讨论各类协方差估计方法的
优劣及适用场景，主要内容包括：1、采用一套统一、透明的评价体系来评
估各个算法的估计效果，保证结果的可比性；2、基于模拟数据验证各类算
法能否达到其理论设计目标；3、基于大类资产、一级行业、股票的真实交
易数据验证各类复杂协方差估计方法相比于样本协方差的改善程度，并针
对不同配置场景（大类资产、行业、股票）提供实操建议。 

 

样本协方差是真实协方差的渐进无偏估计，但观测样本较少时估计误差大 

多元正态分布假设下，样本协方差是真实协方差矩阵的渐进、无偏估计量，
当观测样本足够长时，样本协方差会收敛到真实协方差矩阵；只有当观测
长度𝑛相比于资产维度𝑝不够时，才需要引入复杂协方差估计方法。实证结
果表明，当𝑝/𝑛 < 0.1时，样本协方差已经是一个较为精确的估计量，引入
复杂协方差估计方法带来的增益有限；当0.1 < 𝑝/𝑛 < 1时，复杂协方差估
计方法会体现出一定的改善，而且这种改善会随着𝑝/𝑛比提升而愈发明显；
当𝑝/𝑛 > 1时，样本协方差矩阵不满秩，无法在真实场景中应用，而因子模
型、压缩估计等复杂方法仍能保证协方差估计量的正定性，适用范围更广。 

 

稀疏矩阵方法假定协方差矩阵具有稀疏结构，在真实应用中适用性不足 

稀疏矩阵方法假定协方差矩阵具有稀疏结构，也即协方差矩阵的非对角元
素中大部分为零，这样可以大幅减少需要估计的参数个数，从而降低整体
估计误差。实证结果表明，稀疏假设在真实应用中过于强烈，尤其是行业
和个股场景，各资产波动水平相仿，协方差矩阵各元素大小是可比的。所
以该方法的适用范围相对受限，只有在𝑝/𝑛较大时相比于样本协方差有一定
的改善，而且这种改善主要是因为样本协方差的估计误差较大，并非稀疏
估计量本身有多精确。 

 

因子模型假定协方差具有条件稀疏结构，在行业和股票配置中改善显著 

因子模型假定资产收益率可由某些共同的底层因子驱动，不能被因子解释
的部分称为残差收益率，那么对资产收益率协方差的估计可以分解成对因
子收益率协方差和残差收益率协方差的估计。其中，因子数量远小于股票
数量，而残差协方差又可以加以适当的简化（比如稀疏化，甚至是对角阵），
两者相结合大幅减少了需要估计的参数个数，提升了估计精度。本文实证
了因子模型中典型的 POET 算法，结果表明，该类算法在大类资产场景下
使用相对受限，因为大类资产间较难找到显著的共性驱动因素，而行业和
个股场景下，市场的涨跌本就是最大的解释变量，所以该算法改善明显。 

 

压缩算法在大类资产、行业、股票配置场景下均改善明显，适用性较广 

压缩算法采用贝叶斯估计的思路，将样本协方差（基于观测样本的后验估
计）向特定结构的目标协方差矩阵（基于主观判断、历史经验构建的先验
估计）压缩。其中，样本协方差矩阵是无偏估计，但是参数众多，估计误
差较大；而目标协方差具有更简洁的结构，虽然带有设定偏差，但需要估
计的参数较少，因而估计误差较小，压缩估计的目的就是在先验设定偏差
和后验估计误差间达到平衡。本文实证了三类经典的线性压缩算法和一种
非线性压缩算法，结果表明，在大类资产、行业、股票配置场景下，压缩
估计相比于样本协方差都有显著改善，适用性较广。 

 

风险提示：模型根据历史规律总结，历史规律可能失效。报告中涉及到的
具体资产、股票不代表任何投资意见，请投资者谨慎、理性地看待。 

 

相关研究 

https://crm.htsc.com.cn/doc/2019/10750101/ed4569eb-f2ab-4d72-b774-b896d9192d0c.pdf
https://crm.htsc.com.cn/doc/2019/10750101/7157166f-9efa-4a82-a27b-aa21b15731cb.pdf
https://crm.htsc.com.cn/doc/2019/10750101/7157166f-9efa-4a82-a27b-aa21b15731cb.pdf
https://crm.htsc.com.cn/doc/2019/10750101/127ecb35-cea3-4e1e-a757-88faa0099609.pdf
https://crm.htsc.com.cn/doc/2019/10750101/127ecb35-cea3-4e1e-a757-88faa0099609.pdf


 

金工研究/深度研究 | 2019 年 11 月 05 日 

 

谨请参阅尾页重要声明及华泰证券股票和行业评级标准 2 

 

正文目录 

本文研究导读 .................................................................................................................... 4 

协方差矩阵估计方法概述 .................................................................................................. 5 

无条件协方差矩阵估计 .............................................................................................. 6 

稀疏矩阵方法 ..................................................................................................... 6 

因子模型方法 ..................................................................................................... 8 

压缩估计方法 ................................................................................................... 10 

线性压缩 .......................................................................................................... 10 

非线性压缩模型 ............................................................................................... 11 

条件协方差矩阵估计 ................................................................................................ 12 

协方差矩阵估计效果的评价方法 ..................................................................................... 13 

依赖真实协方差数据的评价方法 ............................................................................. 13 

特征值分布 ...................................................................................................... 13 

Frobenius 范数距离 ......................................................................................... 14 

Sigma 范数距离 ............................................................................................... 15 

不依赖真实协方差数据的评价方法 .......................................................................... 15 

偏差统计量 ...................................................................................................... 15 

最低波动组合样本外表现 ................................................................................. 16 

目标波动组合样本外表现 ................................................................................. 16 

不同协方差估计方法的实证对比分析 .............................................................................. 17 

模拟数据实证分析 ................................................................................................... 17 

样本协方差 ...................................................................................................... 17 

稀疏矩阵 .......................................................................................................... 19 

因子模型 .......................................................................................................... 21 

压缩算法 .......................................................................................................... 22 

真实数据实证分析 ................................................................................................... 24 

偏差统计量 ...................................................................................................... 24 

最小波动组合样本外表现 ................................................................................. 26 

目标波动组合样本外表现 ................................................................................. 28 

总结与展望 .............................................................................................................. 30 

风险提示 .................................................................................................................. 31 

参考文献 .......................................................................................................... 31 

 
  

图表目录 

图表 1： 协方差估计方法研究框架 .................................................................................. 4 

图表 2： 协方差矩阵估计方法概述 .................................................................................. 5 

图表 3： 软阈值和硬阈值算法示意图 ............................................................................... 6 

图表 4： 可观测因子模型和潜在因子模型实现流程对比 .................................................. 9 



 

金工研究/深度研究 | 2019 年 11 月 05 日 

 

谨请参阅尾页重要声明及华泰证券股票和行业评级标准 3 

图表 5： 线性压缩方法的几何含义 ................................................................................ 10 

图表 6： 协方差估计效果评价体系 ................................................................................ 13 

图表 7： 不同类型特征值分布 ........................................................................................ 14 

图表 8： Type=1 时样本协方差估计的特征值分布 ......................................................... 17 

图表 9： Type=2 时样本协方差估计的特征值分布 ......................................................... 17 

图表 10： Type=3 时样本协方差估计的特征值分布 ....................................................... 18 

图表 11： Type=4 时样本协方差估计的特征值分布 ....................................................... 18 

图表 12： 样本协方差估计量的 F 范数距离 ................................................................... 18 

图表 13： 样本协方差估计量的 Sigma 范数距离 ........................................................... 18 

图表 14： toeplitz、block、band 矩阵热力图 ................................................................ 19 

图表 15： toeplitz 结构下稀疏估计的 PRAIL 相对改善程度 ........................................... 19 

图表 16： oeplitz 结构下稀疏估计的 sigma 范数距离 .................................................... 19 

图表 17： toeplitz 矩阵协方差矩阵估计量热力图 ........................................................... 20 

图表 18： block 矩阵协方差矩阵估计量热力图 .............................................................. 20 

图表 19： band 矩阵协方差矩阵估计量热力图 .............................................................. 20 

图表 20： POET 估计量 sigma 范数距离，资产数量 p=50 ........................................... 21 

图表 21： POET 估计量 sigma 范数距离，资产数量 p=100 ......................................... 21 

图表 22： Type=1 时压缩估计量的特征值分布 .............................................................. 22 

图表 23： Type=2 时压缩估计量的特征值分布 .............................................................. 22 

图表 24： Type=3 时压缩估计量的特征值分布 .............................................................. 22 

图表 25： Type=4 时压缩估计量的特征值分布 .............................................................. 22 

图表 26： Type=1 时压缩估计的平均误差相对改善 PRIAL（%） ................................. 23 

图表 27： Type=2 时压缩估计的平均误差相对改善 PRIAL（%） ................................. 23 

图表 28： Type=3 时压缩估计的平均误差相对改善 PRIAL（%） ................................. 23 

图表 29： Type=4 时压缩估计的平均误差相对改善 PRIAL（%） ................................. 23 

图表 30： 不同协方差估计方法 ...................................................................................... 24 

图表 31： 特征向量组合偏差统计量（14 个大类资产） ................................................ 25 

图表 32： 特征向量组合偏差统计量（28 个一级行业） ................................................ 25 

图表 33： 特征向量组合偏差统计量（200 支股票） ..................................................... 25 

图表 34： 最小波动组合年化波动率对比，14 个大类资产（单位：%） ....................... 26 

图表 35： 最小波动组合年化波动率对比，28 个行业（单位：%） .............................. 27 

图表 36： 最小波动组合年化波动率对比，50 只股票（单位：%） .............................. 27 

图表 37： 最小波动组合年化波动率对比，100 只股票（单位：%） ............................ 27 

图表 38： 最小波动组合年化波动率对比，200 只股票（单位：%） ............................ 27 

图表 39： 目标波动组合年化波动率对比，14 个大类资产（单位：%） ....................... 28 

图表 40： 目标波动组合年化波动率对比，28 个行业（单位：%） .............................. 28 

图表 41： 目标波动组合年化波动率对比，50 只股票（单位：%） .............................. 29 

图表 42： 目标波动组合年化波动率对比，100 只股票（单位：%） ............................ 29 

图表 43： 目标波动组合年化波动率对比，200 只股票（单位：%） ............................ 29 

图表 44： 不同协方差估计方法的适用性分析 ................................................................ 30 

 
 



 

金工研究/深度研究 | 2019 年 11 月 05 日 

 

谨请参阅尾页重要声明及华泰证券股票和行业评级标准 4 

本文研究导读 
 

协方差矩阵的估计在量化投资中有着广泛的应用，比如投资组合构建中，需要使用资产协

方差矩阵来预测组合未来的波动率；又比如多因子选股中，需要使用因子 IC 序列的协方

差矩阵进行 ICIR 加权。因此，协方差矩阵估计的精确与否直接影响到模型的最终表现。 

 

一般而言，投资者通常采用样本协方差作为对真实协方差矩阵的估计，大数定律告诉我们，

当样本长度𝑛远大于资产维度𝑝时（𝑝/𝑛 → 0），样本协方差矩阵会收敛到真实协方差矩阵。

而大多数场景下该假设并不满足，甚至更极端的情形下，当资产维度𝑝大于样本长度𝑛时，

样本协方差矩阵是奇异矩阵（不满秩，无法求逆）。因此需要引入更复杂、适用性更强的

协方差矩阵估计方法。 

 

本篇报告将重点讨论市场上主流的协方差矩阵估计方法，主要内容如下： 

1. 采用不同维度的数据验证各个算法的适用场景，其中既包含适用于该算法的特定结构

的模拟数据，也包含真实的交易数据。 

2. 采用统一、透明的评价体系评估各个算法的估计效果，其中，评估方法主要分为两大

类：一类需要依赖真实的协方差矩阵，主要用于模拟数据，旨在从理论视角评估协方

差估计精度；另一类不需要依赖真实的协方差矩阵，主要用于真实数据，旨在从应用

视角评估各种协方差估计算法相比于样本协方差的改善程度。 

3. 拓展协方差估计方法的实证场景。现有协方差估计方法的讨论主要集中在股票投资组

合构建中，这是因为股票数量众多，𝑝/𝑛 → 0的先验假设更难满足，必须采用更高阶

的估计方法。本篇报告将讨论范围拓展至行业配置与大类资产配置场景，虽然行业数

量、大类资产数量相比于股票小很多，样本协方差的先验假设更容易满足，但如果复

杂方法能带来估计精度的提升，仍然具备较大的实用价值。 

 

图表1： 协方差估计方法研究框架 

 

资料来源：华泰证券研究所 

 

本篇报告后续内容安排如下：第二部分将综述市场上主流的协方差估计方法，包括设计原

理与实现过程；第三部分将给出协方差估计方法的评价体系；第四部分将实证不同协方差

估计方法在模拟数据和真实数据上的表现；最后一部分将总结分析各算法的优劣及适用场

景，力争为真实投资组合构建提供实操建议。 
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协方差矩阵估计方法概述 
 

根据估计对象的不同，协方差矩阵估计方法可以分为无条件协方差估计和条件协方差估计

两大类。前者假设协方差矩阵不随时间变化，也即每期观测变量之间是独立同分布的；后

者则假设𝑡时刻的协方差矩阵与𝑡时刻之前的协方差矩阵有关，换言之，估计对象是𝑡时刻的

条件协方差矩阵。 

 

无条件协方差矩阵估计方法主要分为三类： 

 稀疏矩阵：假定协方差矩阵具有稀疏结构，也即协方差矩阵的非对角元素中大部分为

零，这样可以大幅减少需要估计的参数个数，从而减小整体估计误差。常见的稀疏算

法包括硬阈值、软阈值以及带惩罚系数的自适应阈值。 

 因子模型：假定股票收益率可由某些共同的底层因子驱动，不能被因子解释的部分称

为股票的特质收益率，那么对股票收益率协方差的估计可以分解成对因子收益率协方

差和残差收益率协方差的估计。其中，因子数量远小于股票数量，而残差协方差又可

以加以适当的简化（比如稀疏化，甚至是对角阵），两者相结合大幅减少了需要估计

的参数个数，提升了估计精度。常见的因子模型包括单因子模型、多因子模型以及潜

在因子模型。 

 压缩算法：采用贝叶斯估计的思路，将样本协方差（基于观测样本的后验估计）向特

定结构的目标协方差矩阵（基于主观判断、历史经验构建的先验估计）压缩。其中，

样本协方差矩阵是无偏估计，但是参数众多，估计误差较大；而目标协方差具有更简

洁的结构，虽然带有设定偏差，但需要估计的参数较少，因而估计误差较小。结合样

本协方差和目标协方差可以得到真实协方差矩阵的贝叶斯估计，在先验设定偏差和后

验估计误差间达到平衡。常见的压缩类算法包含线性压缩和非线性压缩。 

 

条件协方差矩阵估计方法认为协方差矩阵是一个高维的时变随机变量，并且𝑡时刻的协方

差矩阵与𝑡时刻之前的协方差矩阵相关，因此可以通过时变模型来进行估计，这些方法可

以看成是一元波动率估计方法的高维版本。 

 

图表2： 协方差矩阵估计方法概述 

 

资料来源：华泰证券研究所 

 

本篇报告将主要聚焦于无条件协方差估计方法，包括稀疏矩阵、因子模型和压缩算法。本

章后续内容将详述各类算法的设计原理、实现过程与适用场景。 
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无条件协方差矩阵估计 

 

稀疏矩阵方法 

 

稀疏矩阵方法假定协方差矩阵具有稀疏结构，也即协方差矩阵的非对角元素中大部分为零，

这样可以大幅减少需要估计的参数个数，降低模型求解复杂度，从而减小整体估计误差。 

 

稀疏矩阵方法的主要思想是通过设定阈值来压缩样本协方差矩阵的非对角元。记样本协方

差矩阵压缩后的元素为： 

𝑠𝑖𝑗
𝜏 = {

𝑠𝑖𝑗 𝑖 = 𝑗

h(𝑠𝑖𝑗 , 𝑤) 𝑖 ≠ 𝑗
 

其中h(𝑠𝑖𝑗 , 𝑤)是阈值压缩函数，𝑠𝑖𝑗是样本协方差的元素，𝑤是给定的阈值参数。学界提出

了很多阈值压缩函数h(𝑠𝑖𝑗 , 𝑤)的设定方法，其中广泛使用的是硬阈值、软阈值两类。 

 

硬阈值稀疏化的本质是保留样本协方差矩阵中绝对值大于阈值的非对角元素，绝对值小于

阈值的非对角元素则直接设置为 0。硬阈值压缩函数可以表示为： 

h(𝑠𝑖𝑗 , 𝑤) = {
𝑠𝑖𝑗 |𝑠𝑖𝑗| ≥ 𝑤

0 |𝑠𝑖𝑗| < 𝑤
 

其中，𝑤是阈值。 

 

软阈值稀疏化算法同样将绝对值小于阈值的非对角元素设为 0，同时会将绝对值大于阈值

的非对角元素进行压缩处理，只保留大于阈值的部分，软阈值压缩函数可表示为 

h(𝑠𝑖𝑗 , 𝑤) = {
𝑠𝑔𝑛(𝑠𝑖𝑗)(|𝑠𝑖𝑗| − 𝑤) |𝑠𝑖𝑗| ≥ 𝑤

0 |𝑠𝑖𝑗| < 𝑤
 

其中符号函数𝑠𝑔𝑛(𝑥) = 𝑥/|𝑥|，𝑤是阈值。 

 

Bickel(2008)、Rothman(2009)等学者的研究指出，当真实的协方差矩阵满足稀疏性假设

时，硬阈值法和软阈值法都能收敛到真实的协方差矩阵。 

 

图表3： 软阈值和硬阈值算法示意图 

 

资料来源：华泰证券研究所 

 

硬阈值法和软阈值法的原理非常简单，唯一需要确认的参数就是阈值𝑤，实践中一般采用

交叉验证的思路，也即将长度为𝑛的观测样本随机拆分成长度为𝑛 − 𝑛/𝑙𝑜𝑔(𝑛)的训练集和

长度为𝑛/𝑙𝑜𝑔(𝑛)的验证集，假设Σ̂1、Σ̂2分别代表训练集和验证集上的样本协方差矩阵，构

建如下损失函数： 

𝑙𝑜𝑠𝑠 = ‖𝑇𝑠(Σ̂1) − Σ̂2‖𝐹
2
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其中，𝑇𝑠(∙)表示稀疏化处理，‖∙‖𝐹
2表示 Frobenius 范数，也即矩阵中所有元素的平方和。上

述模拟重复多次，通过优化模型求解使得平均损失函数最小的门限值𝑤作为模型输入。 

 

硬阈值法和软阈值法的实现相对简单，但却存在一个隐患：改变样本协方差的矩阵元素后，

无法保证估计量正定，而正定性是资产协方差矩阵最基本的性质。其经济含义很直观，假

设稀疏化后的协方差估计量为Σ̂𝑡，对其进行特征值分解，其中，𝒖 = (𝒖1, 𝒖2, … , 𝒖𝑝)代表特

征向量，𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑝)代表特征值，𝑝为资产维度，则对任意𝑖: 1 ≤ 𝑖 ≤ 𝑝，都有： 

𝒖𝑖
′Σ̂𝑡𝒖𝑖 = 𝜆𝑖 

换言之，如果构建一个投资组合，权重分配向量为𝒖𝑖，那么组合波动率的平方就是𝜆𝑖，显

然，该值不能为负，也即协方差矩阵估计量必须正定。 

 

为了保证稀疏矩阵估计量的正定性，学者提出了一系列改进方案。Xue(2012)指出，软阈

值算法的压缩公式就是如下凸优化问题的解析解： 

Σ̂ = 𝑎𝑟𝑔𝑚𝑖𝑛Σ
1

2
‖Σ − Σ̂𝑠‖𝐹

2
+ 𝑤|Σ|1,𝑜𝑓𝑓 

其中，Σ̂𝑠代表样本协方差估计量，‖∙‖𝐹
2表示 Frobenius 范数，也即矩阵中所有元素的平方

和，|∙|1,𝑜𝑓𝑓表示矩阵中所有非对角元素的绝对值之和，𝑤就是软阈值法中设定的阈值。为

了保证求解结果正定，可以在上述优化问题中加入最小特征值大于零的约束： 

Σ̂+ = 𝑎𝑟𝑔𝑚𝑖𝑛Σ
1

2
‖Σ − Σ̂𝑠‖𝐹

2
+𝑤|Σ|1,𝑜𝑓𝑓   𝑠. 𝑡. Λ𝑚𝑖𝑛(Σ) > 0 

虽然只是加入了一个约束项，优化问题的求解复杂度却大幅提升，幸运的是，Xue(2012)

给出了一套高效的交替方向求解算法，该算法的每一步迭代过程都有解析解，运行速度非

常快，而且能保证最终的求解结果正定。 

 

Liu(2014)提出了与 Xue(2012)类似的方案，主要改进有二：1、将稀疏对象由协方差矩阵

变成相关系数矩阵，这样可以有效克服协方差边际规模的不同，因为相关系数分布在[-1,1]

之间，相互之间可比，而协方差的每个元素可能由于不同资产波动率不同而导致量级上的

差别。协方差矩阵和相关系数矩阵的关系为Σ𝑐𝑜𝑣 = 𝑃Σ𝑐𝑜𝑟𝑟𝑃，其中，𝑃 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑝)

是𝑝个资产的标准差构成的对角矩阵，当获得相关系数矩阵的稀疏估计量后，按照上述公

式即可得到协方差矩阵的稀疏估计量。2、引入带有自适应惩罚系数矩阵𝑊的求解算法，

最终优化问题如下： 

Σ̂+ = 𝑎𝑟𝑔𝑚𝑖𝑛Σ
1

2
‖Σ − Σ̂𝑠‖𝐹

2
+ 𝑤|W ∘ Σ|1,𝑜𝑓𝑓   𝑠. 𝑡. Λ𝑚𝑖𝑛(Σ) > 0, Σ𝑗𝑗 = 1 

其中，𝑊就是加权惩罚系数矩阵，W ∘ Σ表示 Hadamard 内积，也即对应元素相乘得到的

新矩阵。值得注意的是，优化问题中显式的加入了Σ𝑗𝑗 = 1的约束，也即相关系数矩阵的对

角元素必须为 1。关于加权惩罚系数矩阵𝑊的设定，Liu(2014)给出了三种方案：1、𝑊𝑗𝑘 = 1，

也即全 1 矩阵；2、𝑊𝑗𝑘 = (|𝑆𝑗𝑘| + 1/𝑛)
−1，也即取样本相关系数对应元素的倒数作为惩罚

系数，1/𝑛是为了避免出现零值项；3、𝑊𝑗𝑘 = (|Σ̂𝑗𝑘
𝑆𝑇𝑂| + 1/𝑛)−1，也即将方式二中样本相关

系数替换成经软阈值稀疏化后的估计量。同样地，针对该优化问题，Liu(2014)也提出了一

套高效的迭代求解算法，每一步迭代过程都有解析解，而且能保证最终估计量正定。 

 

需要强调的是，Xue(2012)和 Liu(2014)提出的方法都构建在经典软阈值算法基础之上，如

果经典的软阈值法已经能得到正定的估计量，则无需运行后续迭代求解过程。 
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因子模型方法 

 

多数场景下，稀疏性假设过于严格，例如某一行业中的股票构成的投资组合，由于市场和

行业因素的存在，股票收益率之间的相关性较高，协方差矩阵很难满足稀疏性假设，而剔

除市场和行业因素的影响后，剩余成分的协方差矩阵或将更容易满足稀疏性假设。因子模

型正是基于这样的出发点。 

 

因子模型假设资产收益率可以被共同的底层驱动因子所解释，不能被因子解释的部分称之

为资产的特质收益率（或残差收益率），因此，资产收益率可以表示为： 

𝑦𝑖𝑡 = 𝛽𝑖1𝑓1𝑡 +··· +𝛽𝑖𝐾𝑓𝐾𝑡 + 𝑢𝑖𝑡 

其中𝑓𝑘𝑡(𝑗 = 1,···, 𝐾)代表𝐾个因子在第𝑡期的收益率，𝛽𝑖𝑘(𝑖 = 1,···, p)代表𝑝个资产在各个因

子上的暴露，𝑢𝑖𝑡(𝑡 = 1,···, n)代表残差收益率，上述表达式的矩阵形式为： 

𝑦𝑡 = 𝐵𝑓𝑡 + 𝑢𝑡 

假设因子收益率𝑓𝑡和残差收益率𝑢𝑡不相关，则投资组合的协方差矩阵可以表示为： 

Σ = 𝐵Σ𝑓𝐵
′ + Σ𝑢 

可见，对资产收益率协方差的估计可以分解成对因子收益率协方差Σ𝑓和残差收益率协方差

Σ𝑢的估计。其中，因子数量𝐾远小于资产数量𝑝，而残差协方差又可以加以适当的稀疏化

假定（传统多因子模型中的对角阵假定本质上就是阈值无穷大时的极端情况），两者相结

合大幅减少了需要估计的参数个数，提升了估计精度。 

 

根据因子定义方式的不同，因子模型通常可分为可观测因子模型和潜在因子模型两类：常

见的 CAPM 模型、Fama-French 三因子模型以及多因子模型都属于可观测因子模型，因

为回归方程中每个因子都有明确的定义，数据也都可以无差别的获取；潜在因子模型同样

假定资产收益率可以被某些因子所解释，但是因子的定义不再是从基本面、技术面等逻辑

出发，而是从统计角度出发，采用主成分分析等方法直接从资产收益率中提取，它更像是

一种隐含因子，可能并不具备明确的经济学含义。 

 

由于可观测因子模型已经有大量的文献讨论，本文主要以 Fan(2015)中提出的主成分正交

补（POET）方法为例，简述潜在因子模型的构建流程。 

 

在 POET 方法中，设𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑝是样本协方差矩阵S的特征值，𝜇1, ⋯ , 𝜇𝑝是相应的特

征向量，简单推导可知如下等式成立： 

𝑆 =∑ 𝑏𝑗𝜇𝑗𝜇𝑗
′

𝑝

𝑗=1
 

取前𝑘个因子作为资产收益率的共同解释因子，则样本协方差矩阵可以分解成： 

𝑆 =∑ 𝑏𝑗𝜇𝑗𝜇𝑗
′

𝑘

𝑗=1
+∑ 𝑏𝑗𝜇𝑗𝜇𝑗

′
𝑝

𝑗=𝑘+1
 

其中，𝑆𝑘 = ∑ 𝑏𝑗𝜇𝑗𝜇𝑗
′𝑝

𝑗=𝑘+1 是主成分正交补，它可类比于可观测因子模型中的残差协方差矩

阵Σ̂𝑢，根据条件稀疏性的假设，在剔除共同成分后可以对主成分正交补𝑆𝑘进行稀疏化，稀

疏化的方法与上一小节介绍的一致，设稀疏化后的主成分正交补为 

𝑆𝑘
𝑤 = (𝑆𝑘,𝑖𝑗

𝑤 )
𝑝×𝑝

     𝑆𝑘,𝑖𝑗
𝑤 = {

𝑆𝑘,𝑖𝑗 𝑖 = 𝑗

h(𝑆𝑘,𝑖𝑗 , 𝑤) 𝑖 ≠ 𝑗
 

则基于 POET 方法构建的协方差估计量为：  

Σ̂𝑘 =∑ 𝑏𝑗𝜇𝑗𝜇𝑗
′

𝑘

𝑗=1
+ 𝑆𝑘

𝑤 
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可见，POET 方法的思路非常直观，其中最重要的参数就是取前几个主成分作为共同解释

因子， Bai and Ng(2002)给出了潜在因子数量𝑘的一致估计量： 

𝑘̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛⏟
0≤𝐾1≤𝑀

𝑙𝑜𝑔 {
1

𝑝𝑛
‖𝑌 − 𝑛−1𝑌𝐹̂𝐾1𝐹̂𝐾1

′ ‖
𝐹

2
} + 𝐾1𝑔(𝑛, 𝑝) 

其中，𝑀是一个给定的上界，𝑝代表资产维度，𝑛代表观测样本长度，𝑌 = (𝑦1, . . . , 𝑦𝑛)是资

产收益率向量构成的矩阵，𝐹̂𝐾1是一个𝑛 × 𝐾1的矩阵，𝐹̂𝐾1的列向量是矩阵𝑌′𝑌的前𝐾1个最大

的特征向量乘以√𝑛，。惩罚项函数𝑔(𝑛, 𝑝)可以是 

𝑔(𝑛, 𝑝) =
𝑝 + 𝑛

𝑝𝑛
𝑙𝑜𝑔 (

𝑝𝑛

𝑝 + 𝑛
) 

或者 

𝑔(𝑛, 𝑝) =
𝑝 + 𝑛

𝑝𝑛
𝑙𝑜𝑔(𝑚𝑖𝑛{𝑝, 𝑛}) 

遍历𝑘值从0到𝑀，获取使得上述表达式最小的𝑘̂作为 POET 模型中潜在因子的个数。 

 

图表4： 可观测因子模型和潜在因子模型实现流程对比 

 

资料来源：华泰证券研究所 

 

综上，无论是可观测因子模型还是潜在因子模型，其核心思想都是将资产收益率分解为因

子能解释的部分和残差项，由此，对资产协方差的估计可以分解为对因子协方差和残差协

方差的估计，以此来达到降维、提升估计精度的目的。其中，可观测因子模型的优点是可

理解性强，难点是如何找到一组对有显著定价能力的因子（回归方程的解释力度不足会导

致模型失效），除此之外，不同类型的资产有不同的影响因子，收集和处理因子数据也是

一个相对繁琐的过程。潜在因子模型只需要用到资产的收益率数据，而且即便是在样本协

方差矩阵不可逆的情况下（资产维度𝑝大于观测长度𝑛），也可以通过阈值的设定保证估计

量正定。然而，潜在因子模型付出的代价也是较大的，较多的假设意味着模型的适用范围

比较窄，如 POET 方法只适用于特征值快速发散且满足条件稀疏性假设的场景。 
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压缩估计方法 

 

总结前文提到的稀疏矩阵或因子模型，本质上都是在先验假定协方差矩阵具有某种特殊结

构（稀疏结构或条件稀疏结构），以此来减少需要估计的参数，提升估计精度。但是在没

有关于矩阵真实结构的先验信息的情况下，特殊结构通常会被错误指定，以至于估计量与

真实协方差矩阵有较大的结构偏差。而如果采用样本协方差作为真实协方差的估计，虽不

会对协方差结构加以任何先验设定（也就不存在结构偏差），但是在观测长度不够长时又

会存在较大的估计误差，那么存不存在一种估计方法能够兼顾结构偏差和估计误差呢？线

性压缩算法就是这样的出发点。 

 

线性压缩 

 

线性压缩算法采用贝叶斯估计的思路，将样本协方差（基于观测样本的后验估计）向特定

结构的目标协方差矩阵（基于主观判断、历史经验构建的先验估计）压缩。其中，样本协

方差矩阵是无偏估计，但是参数众多，估计误差较大；而目标协方差具有更简洁的结构，

虽然带有结构设定偏差，但需要估计的参数少，因而估计误差较小。结合样本协方差和目

标协方差可以得到真实协方差矩阵的贝叶斯估计。 

 

线性压缩方法本质上是通过对样本协方差矩阵和压缩目标矩阵进行线性加权，在先验设定

偏差和后验估计误差间达到平衡： 

Σ̂ = 𝛼𝐹 + (1 − 𝛼)𝑆 

其中，𝐹是目标压缩矩阵，𝑆是样本协方差，𝛼是压缩强度，取值 0 到 1 之间。可以看到，

只要压缩目标矩阵正定，且𝛼不为零，则压缩估计量一定是正定的，因为样本协方差至少

是半正定矩阵，换言之，即便资产维度大于观测样本长度，导致样本协方差不满秩，压缩

算法也能适用。 

 

关于压缩强度𝛼的取值，可以通过如下优化问题确定： 

𝑚𝑖𝑛𝛼 ‖𝛼𝐹 + (1 − 𝛼)𝑆 − Σ‖𝐹
2  

其中，Σ表示真实的协方差矩阵。𝛼越大表示估计结果越偏向于先验设定的压缩目标矩阵，

𝛼越小则越偏向于后验估计的样本协方差。 

 

线性压缩方法的几何含义如下图所示，在高维空间中，压缩目标矩阵𝐹和样本协方差阵𝑆分

别是两个离散的点，线性压缩估计量就位于这两点的连线上，需要确定一个合适的压缩强

度𝛼，使得估计量与真实协方差的距离（用 Frobenius 范数衡量）达到最短。 

 

图表5： 线性压缩方法的几何含义 

 

资料来源：华泰证券研究所，ledoit and wolf(2003) 

 

Ledoit 和 Wolf 先后提出了三种线性压缩目标矩阵，分别是样本均值单位阵、单指数模型、

等相关系数矩阵，在真实应用中，投资者可以根据自己的主观判断合理选择。 
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（1）样本均值单位阵 

 

Ledoit&Wolf(2001)中提出了基于样本均值单位阵的压缩目标矩阵： 

𝐹 = 𝜇𝐼, 

𝑢 =
1

𝑝
∑ 𝑆𝑖𝑖

𝑝

𝑖=1
 

其中，𝐼表示单位阵，𝑢等于各资产方差的平均值，𝑆𝑖𝑖表示样本协方差的对角元素，可以看

到，样本均值单位阵模型下压缩目标𝐹是一个对角矩阵，其对角线上的元素相等，取值为

所有资产方差的平均值，非对角线上的元素为 0。进一步，将样本协方差进行特征值分解，

记𝑈为特征向量矩阵，𝛬为特征值对角阵，则线性压缩估计量为： 

Σ̂ = 𝜌𝜇𝐼 + (1 − 𝜌)𝑆 = 𝑈(𝜌𝜇𝐼 + (1 − 𝜌)𝛬)𝑈′ 

可以看到，该压缩估计量本质上是在将样本协方差的特征值向单位阵压缩，减小较大的特

征值被高估、较小的特征值被低估的偏误。 

 

（2）单指数模型 

 

Sharpe 单指数模型将股票收益率拆解成与市场相关的部分以及残差收益率： 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑦𝑚𝑘𝑡,𝑡 + 𝜀𝑖𝑡 

Ledoit&Wolf(2003)中单指数模型下的目标压缩矩阵为： 

𝐹 = 𝜎𝑚𝑘𝑡
2 𝜷𝜷′ + 𝐷 

其中，𝜎𝑚𝑘𝑡代表市场收益率的波动率，𝜷是𝑝 × 1的向量，𝛽𝑖表示第𝑖支股票收益率对市场收

益回归的系数，𝐷是𝑝 × 𝑝对角阵，对角线元素对应每支股票的残差波动率。在实践中，为

简化处理，一般取所有资产的等权组合作为市场收益率。 

 

（3）等相关系数模型 

 

假设𝑆为样本协方差矩阵，𝑅为样本相关系数矩阵，则矩阵元素之间存在如下映射关系： 

𝑟𝑖𝑗 =
𝑠𝑖𝑗

√𝑠𝑖𝑖𝑠𝑗𝑗
 

对相关系数矩阵上三角区域求平均： 

𝑟̅ =
2

(𝑝 − 1)𝑝
∑ ∑ 𝑟𝑖𝑗

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

 

则基于等相关系数模型构建的压缩目标矩阵𝐹如下： 

𝑓𝑖𝑖 = 𝑠𝑖𝑖        𝑎𝑛𝑑      𝑓𝑖𝑗 = 𝑟̅√𝑠𝑖𝑖𝑠𝑗𝑗 

可以看到，等相关系数压缩矩阵的对角线元素与样本协方差保持一致，非对角线元素则由

平均相关系数𝑟̅以及各资产的波动率共同确定。 

 

非线性压缩模型 

 

使用线性压缩方法构造协方差矩阵估计量，必须要先验指定压缩目标矩阵𝐹，通常情况下，

先验信息可能无法获取，目标矩阵就无从设置，因此，Ledoit 和 Wolf 等学者提出了非线

性压缩方法。 

 

在介绍非线性压缩之前，需要介绍一个“旋转等变”估计量的概念。假设存在某种协方差

估计方法𝑀(∙)，它在原始观测样本𝑌上得到的协方差估计量为Σ̂ = 𝑀(𝑌)，将一个正交矩阵𝑄

作用于𝑌，得到新的观测样本𝑌′ = 𝑄 × 𝑌，如果满足𝑀(𝑌′) = 𝑄Σ̂𝑄′，也即新样本上的协方

差估计量就是原协方差估计量变换而来，则称𝑀(𝑌)为一个“旋转等变”估计量。 
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Perlman(2007)指出，所有的旋转等变估计量都满足如下形式： 

Σ̂ = 𝑈𝐷𝑈′ 

其中，𝑈 = (𝑢1, … , 𝑢𝑝)是样本协方差矩阵 S 的特征向量矩阵，𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑝)是任意

对角阵。在所有旋转不变估计量中，与真实协方差矩阵Σ最近的一个一定是如下优化问题

的解 

min𝐷‖𝑈𝐷𝑈
′ − Σ‖ 

简单求导可知，该优化问题的解析解如下： 

𝑑𝑖
∗ = 𝑢𝑖

′Σ𝑢𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝑝 

然而，真实协方差Σ是未知的，所以上述解是无法实现的理想估计量，Ledoit&Wolf(2010)

基于随机矩阵理论，给出了其一致可实现估计量： 

𝑑̂𝑖 =

{
 
 

 
 

1

(
𝑝

𝑛
− 1)𝑚̆𝐹 (̂0)

𝑏𝑖 = 0

𝑏𝑖

|1 −
𝑝

𝑛
−

𝑝

𝑛
𝑏𝑖𝑚̆𝑝,𝑛

𝜏̂𝑛 (𝑏𝑖)|
2 𝑏𝑖 > 0

 

其中，𝑏𝑖是样本协方差特征值，𝑚̆𝐹(∙)对应某种非线性函数，可以看到，非线性压缩的核心

就是对样本协方差的每个特征值进行压缩处理，从而降低估计偏误。 

 

条件协方差矩阵估计 

 

上文介绍的各种方法都是无条件协方差矩阵估计方法，由于金融市场的时变性，资产的波

动率和相关性往往会呈现出时变规律，因此需要使用时间序列模型对协方差矩阵建模，这

样能有效改善协方差矩阵参数估计的时效性和估计精度。设多元收益率序列{𝑦𝑡} 

𝑦𝑡 = 𝜇𝑡 + 𝛼𝑡 

𝜇𝑡 = 𝐸(𝑦𝑡|𝐹𝑡−1)是在给定过去信息𝐹𝑡−1下𝑟𝑡的条件期望，向量𝛼𝑡是序列在 t 时刻的扰动或新

息。在给定𝐹𝑡−1下𝛼𝑡的条件方差矩阵为 

Σ𝑡 = 𝐶𝑜𝑣(𝛼𝑡|𝐹𝑡−1) 

最简单的时变模型是指数加权移动平均模型(EWMA)，给定新息集合𝐹𝑡−1 = {𝛼1, … , 𝛼𝑡−1}，

Σ̂𝑡可以表示为 

Σ̂𝑡 =
(1 − 𝜆)

1 − 𝜆𝑡
(𝛼𝑡−1𝛼𝑡−1

′ + 𝜆𝛼𝑡−2𝛼𝑡−2
′ +⋯+ 𝜆𝑡−2𝛼1𝛼1

′) 

或者可以表示为 

Σ̂𝑡 = (1 − 𝜆)𝛼𝑡−1𝛼𝑡−1
′ + 𝜆Σ̂𝑡−1 

在 EWMA 模型中，加权系数随时间呈指数式递减，越靠近当前时刻的数值加权系数就越

大，能反映近期变化的趋势。 

 

除了 EWMA 模型以外，还有一些更复杂的多元波动率模型，如 BEKK 模型和 DCC 模型，

这些模型是一元 GARCH 模型的多元推广。虽然多元波动率模型可以更好的捕捉协方差矩

阵的变化规律，但是也需要付出不小的代价，当投资组合资产数量较多时会带来参数估计

的维数灾难，如对于一个 p 维的协方差矩阵，BEKK 模型需要估计的参数为𝑝2(𝑚 + 𝑠) +

𝑝(𝑝 + 1)/2个，其中𝑚和𝑠是模型的滞后项。 

 

除了上文介绍的基础的协方差矩阵估计方法，通过不同的方法之间的融合，还可以得到更

优良的协方差矩阵估计量。比如将协方差矩阵估计的时变模型与压缩估计方法结合，可以

得到 BEKK 单位阵线性压缩估计量(BEKK-I)、DCC 单位阵线性压缩估计量(DCC-I)、BEKK

非线性压缩估计量(BEKK-NL)、DCC 非线性压缩估计量(DCC-NL)等等 
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协方差矩阵估计效果的评价方法 
 

总结前文，我们概述了各类协方差估计方法的设计原理和适用范围，在进行实证检验前，

还需引入一些协方差矩阵估计效果的评价指标，以便更定量的评价不同估计方法的优劣。  

 

协方差估计效果的评估方法主要分为两大类：一类需要依赖真实的协方差矩阵，主要用于

模拟数据，旨在从理论视角评估协方差估计量与真实协方差的距离；另一类不需要依赖真

实的协方差矩阵，主要用于真实数据，旨在从应用视角评估各种协方差估计算法相比于样

本协方差的改善程度。 

 

图表6： 协方差估计效果评价体系 

 

资料来源：华泰证券研究所 

 

依赖真实协方差数据的评价方法 

 

前文介绍的无条件协方差矩阵估计方法中，大多数存在资产收益率向量符合多元正态分布

的假设，学者们在正态分布假设下，通过数学推导，证明了这些协方差矩阵估计量具有无

偏性、渐进性等良好性质。而现实场景中，资产收益率数据往往呈现出尖峰后尾的分布特

征，而且资产间的相关性往往会随着时间改变，多元正态分布的假设难以满足。换言之，

当某个算法在真实应用场景下的表现不达预期时，我们很难判定究竟是因为该估计量本身

较差，还是因为数据样本不符合正态分布假设。因此，为了更客观的评估各个算法的效用，

首先需要在适用于该算法的模拟数据上进行实证。而且，模拟数据的协方差矩阵是先验设

定的，所以可以直接比对协方差估计量和真实值的偏差，这里介绍三类方法：特征值分布、

Frobenius 范数距离、sigma 范数距离。 

 

特征值分布 

 

前文我们曾提到，协方差矩阵Σ的特征值有直观的经济学含义，它可以做如下分解： 

Σ = 𝑈𝛬𝑈′ = (𝜇1 ⋯ 𝜇𝑝)(

𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑝

)(

𝜇1
⋮
𝜇𝑝
) 

其中𝜇𝑖与𝜆𝑖为 Σ对应的特征向量与特征值，若某个投资组合持有各个资产的权重向量为𝜇𝑖，

则该投资组合的方差为𝜇𝑖
′Σ𝜇𝑖 = 𝜇𝑖

′𝑈𝛬𝑈′𝜇𝑖 = 𝜆𝑖。因此，协方差估计量的特征值和真实特征

值的分布偏差可以作为衡量估计精准度的指标之一。 
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本文设计了 4 种具有代表性的对角协方差矩阵（此时对角线元素就对应特征值），对角线

元素分别为：基于凸函数生成的采样序列、基于凹函数生成的采样序列、基于先凸后凹函

数生辰的采样序列、基于先凹后凸函数生成的采样序列。不失一般性，假设资产维度为 30，

真实特征值分布如下图所示。实际应用中，假设资产收益率均值为 0，基于该对角协方差

矩阵即可生成任意维度的模拟数据。 

 

图表7： 不同类型特征值分布 

 

资料来源：华泰证券研究所 

 

Frobenius 范数距离 

 

在学界中，学者们通常在 Frobenius 范数距离下构建协方差矩阵的最优估计量，并在

Frobenius 范数距离下证明这些估计量满足良好的性质，因此，本文同样使用 Frobenius

范数距离衡量估计量Σ̂与与真实值Σ的偏差。 

𝐷Σ̂ = ‖Σ̂ − Σ‖
𝐹
= √∑ ∑ (𝜎̂𝑖𝑗 − 𝜎𝑖𝑗)

2𝑝

𝑗=1

𝑝

𝑖=1
= √𝑡𝑟[(Σ̂ − Σ)

′
(Σ̂ − Σ)] 

其中𝑡𝑟表示矩阵的迹，即对角元素之和。 

 

为了消除特异值的影响，对每种协方差矩阵估计量Σ̂，我们进行多次模拟，每次模拟执行

如下操作：1、给定资产数量 p 和数据样本数量 n，给定收益率均值向量μ和真实协方差矩

阵Σ；2、根据多元正态分布N(μ, Σ)生成模拟数据样本序列{𝑦𝑡}；3、根据模拟数据样本序列

{𝑦𝑡}，计算第𝑖次模拟的协方差估计量Σ̂𝑖并求出𝐷Σ̂𝑖。最终，计算𝑁模拟的平均距离作为估计

偏差。 

 

需要说明的是，当资产的维度不同或数据的频率不同时，Frobenius 范数距离的量纲是不

同的，为了更直观的反映协方差矩阵估计量的好坏，我们以样本协方差矩阵 S 作为比较基

准，定义协方差矩阵估计量Σ̂的平均误差相对改善(PRIAL) 

PRIAL(Σ̂, S) = (1 −

1

𝑁
∑ 𝐷Σ̂𝑖
𝑁
𝑖=1

1

𝑁
∑ 𝐷S𝑖
𝑁
𝑖=1

) × 100% 

PRIAL(Σ̂, S)的最大值为 1，此时估计量Σ̂和总体协方差矩阵Σ完全相同，PRIAL(Σ̂, S) > 0表

示估计量Σ̂的估计误差比样本协方差矩阵 S 的小，PRIAL(Σ̂, S) < 0表示估计量Σ̂的估计误差

比样本协方差矩阵 S 的大。 
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Sigma 范数距离 

 

Fan(2008)提到 Frobenius 范数距离没有考虑协方差矩阵维度的变化，不适用于评估基于

因子模型的协方差矩阵估计方法的效果。具体来说，假设如下因子模型： 

𝑦𝑡 = 𝐵𝑓𝑡 + 𝑢𝑡 

不失一般性，假设𝐵 = 𝟏，Σ𝑢 = I𝑝，则投资组合的协方差矩阵可以表示为 

Σ = 𝟏𝑉𝑎𝑟(𝑓𝑡)𝟏
′ + I𝑝 

Σ的估计量为 

Σ̂ = 𝟏𝑉𝑎𝑟̂(𝑓𝑡)𝟏
′ + I𝑝 

则有 

Σ̂ − Σ = 𝟏[𝑉𝑎𝑟̂(𝑓𝑡) − 𝑉𝑎𝑟(𝑓𝑡)]𝟏
′ 

其 Frobenius 范数距离为 

‖Σ̂ − Σ‖
𝐹
= |𝑉𝑎𝑟̂(𝑓𝑡) − 𝑉𝑎𝑟(𝑓𝑡)| × 𝑝 

E(‖Σ̂ − Σ‖
𝐹

2
) = 𝑂(

𝑝2

𝑛
) 

换言之，Frobenius 范数距离放大了来自𝑉𝑎𝑟̂(𝑓𝑡)的估计误差。 

 

Fan(2008)定义了一种新的矩阵范数，称之为 Sigma 范数，𝑝 × 𝑝维协方差矩阵A的 Sigma

范数为： 

‖A‖Σ = 𝑝−1/2‖Σ−1/2𝐴Σ−1/2‖
𝐹
 

当A = Σ时，‖Σ‖Σ = 1。那么协方差估计量与真实值的 Sigma 范数距离为： 

‖Σ̂ − Σ‖
Σ
= 𝑝−1/2‖Σ−1/2Σ̂Σ−1/2 − 𝐼‖

𝐹
 

值得一提的是，Sigma 范数距离有一定的经济意义。设w是权重向量，投资组合的方差为 

w′Σw 

Fan(2013)指出：投资组合的估计风险和真实风险的相对误差不超过未经标准化的 Sigma

范数距离： 

|
w′Σ̂𝑤

w′Σw
− 1| ≤ ‖Σ−1/2Σ̂Σ−1/2 − 𝐼‖

𝐹
 

 

不依赖真实协方差数据的评价方法 

 

估计协方差矩阵的最终目的是预测组合风险，而上述各种范数距离仅能反映估计量与真实

协方差矩阵在数值上的差别，并不能直观地反映投资组合风险预测的准确性。而且，模拟

数据均是从多元正态分布中随机抽样所得，难以刻画金融资产收益率尖峰后尾的分布特征， 

所以还需要在真实数据上实证协方差估计方法的表现，此时真实的协方差矩阵是无法获取

的，只能从组合样本外表现来进行评估，常见的评价方法包括：偏差统计量、最低波动组

合样本外表现、目标波动组合样本外表现。 

 

偏差统计量 

 

Menchero(2011)定义了偏差统计量(Bias statistic)，这是一个评估风险预测准确性的指标，

它可以用来衡量风险预测值和风险实际值之间的误差。本文以偏差统计量作为一个评判标

准，考察在不同协方差矩阵估计量下，投资组合风险预测的准确性。 

 

假设𝑦𝑛𝑡是投资组合 n 在 t 期的收益率，𝜎𝑛𝑡是投资组合 n 在 t 期收益率标准差的预测值，

定义偏差 

𝑏𝑛𝑡 =
𝑦𝑛𝑡
𝜎𝑛𝑡
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𝑏𝑛𝑡从定义上很好理解，表示风险实际值和风险预测值之间的比值，如果𝜎𝑛𝑡是准确的预测

值，那么𝑏𝑛𝑡的标准差应该是 1，偏差统计量表示为 

𝐵𝑛 = √
1

𝑇 − 1
∑(𝑏𝑛𝑡 − 𝑏̅𝑛)

2
𝑇

𝑡=1

 

在收益率符合正态分布的假设下，𝐵𝑛的 95%置信区间为 

𝐵𝑛 ∈ [1 − √2/𝑇, 1 + √2/𝑇] 

当偏差统计量𝐵𝑛在置信区间内时，说明协方差估计量是比较精准的，当𝐵𝑛大于置信区间上

界时，投资组合的风险被低估，当𝐵𝑛小于置信区间下界时，投资组合的风险被高估。 

 

为了充分反映协方差矩阵估计量的效果，需要选择一些有代表性的投资组合进行考察，本

文参考 Barra 的做法，以特征值组合作为考察对象。Barra 在介绍 USE4 模型的文章（《The 

Barra US Equity Model (USE4)》，2011）中提到，使用最大特征值对应的特征向量作为

权重构建的投资组合，等价于以最大化组合方差为优化目标构建的投资组合，使用最小特

征值对应的特征向量作为权重构建的投资组合，等价于以最小化组合方差为优化目标构建

的投资组合，因此，以特征向量作为权重构建的投资组合是十分具有代表性的。 

 

最低波动组合样本外表现 

 

分别取股票、行业、大类资产 2007 年以来的真实数据来滚动构建最低波动组合，考察组

合样本外表现，其中： 

 股票维度，全市场筛选满足如下条件的股票：1、07 年以前成立；2、07 年至 19 年 9

月，股票最长停牌时间不超过 10 天，因为停牌会导致收益率为零，影响波动率的估

计；3、非 ST 股。筛选过后一共剩余 232 支股票，限于篇幅，这里不展示筛选明细。

实际应用中，一般会从这 232 支股票中随机抽取 50 支、100 支、200 支来研究不同

资产维度下各类协方差估计量的表现。 

 行业维度，直接选取 28 个申万一级行业作为考察对象。 

 大类资产维度，选取常规的股、债、商资产作为考察对象。其中，股票包括沪深 300、

中证 500、中证 1000、恒生指数、标普 500；债券包括中债-新综合财富指数、中债-

国债总财富指数、中债-信用债总财富指数、中债-企业债总财富指数；商品包括 CRB

综合现货指数、南华商品指数、伦敦金现、伦敦银现、布伦特原油。 

 

理论上，当协方差估计量越精确时，资产间的相关性刻画越贴近真实情形，构建的最低波

动组合的样本外波动也应该越小。 

 

实证过程中，我们在每月末基于历史数据构协方差估计量，然后基于优化模型求解最低波

动组合对应的最优权重，构建下个月的持仓，最后统计整个回测区间内组合的年化波动率。

需要说明的是，组合优化过程中，始终保持权重和为 1 的约束，对于是否加入卖空约束，

我们分别作了实证。 

 

目标波动组合样本外表现 

 

采用与最低波动组合相同的构建思路，我们同时实证了目标波动组合的样本外表现。该测

试场景对结构化产品设计具有较高的实用价值，比如一个挂钩目标波动策略的期权产品，

目标波动控制得是否精准直接影响到期权的定价。理论上，当协方差估计量越精确时，目

标组合样本外的波动率与初始设置的目标波动越匹配。 

 

同样地，我们在每月末基于优化模型构建最新持仓，但是目标波动组合中不能加入权重和

为 1 的约束，否则优化问题可能无法收敛，而对于是否加入卖空约束，我们分别作了实证。 
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不同协方差估计方法的实证对比分析 
 

本章将实证前文提到的各种协方差估计量在模拟数据和真实数据上的表现，后续内容分为

两块： 

1. 模拟数据实证分析，针对不同算法，采用相匹配的模拟数据生成方式（比如稀疏方法

采用稀疏结构的模拟数据，因子模型采用因子结构的模拟数据），验证算法能否到达

其理论设计目标，评价方式主要采用特征值分布、F 范数距离、Sigma 范数距离三种

依赖真实协方差矩阵的方法。 

2. 真实数据实证分析，基于股票、行业、大类资产 2007 年以来的真实收益率序列，验

证各个协方差估计量的优劣，评价方式主要采用偏差统计量、最低波动组合样本外表

现、目标波动组合样本外表现三种不依赖真实协方差矩阵的方法。 

 

模拟数据实证分析 

 

样本协方差 

 

设𝑌𝑡 = (𝑌1𝑡 , . . . , 𝑌𝑝𝑡)
′是𝑝个资产在 t 时刻的观测值，观测长度为𝑛，这𝑝个资产的真实协方差

矩阵为Σ，样本协方差矩阵表示为： 

𝑆 =
1

𝑛 − 1
∑ (𝑌𝑡 − 𝑌̅)(𝑌𝑡 − 𝑌̅)

′
𝑛

𝑡=1
     𝑌̅ =

1

𝑛
∑ 𝑌𝑡

𝑛

𝑡=1
 

上述估计为无偏估计，实际应用中，也有很多学者采用如下形式： 

𝑆 =
1

𝑛
∑ (𝑌𝑡 − 𝑌̅)(𝑌𝑡 − 𝑌̅)

′
𝑛

𝑡=1
     𝑌̅ =

1

𝑛
∑ 𝑌𝑡

𝑛

𝑡=1
 

后文中，统一将上述两种估计方式记为 SampleCov1 和 SampleCov2。 

 

首先考察样本协方差的特征值分布，固定资产维度𝑝 = 30，观测长度𝑛 = 50，在四种特征

值分布下都能得到类似的结论：样本协方差估计量的特征值总是比真实特征值的分布更发

散，也即小的特征值区域存在低估而大的特征值附近存在高估的现象。这也是样本单位阵

线性压缩算法的出发点：将较小的特征值拉高，同时将较大的特征值压缩，从而达到降低

估计误差的目的。 

 

图表8： Type=1 时样本协方差估计的特征值分布  图表9： Type=2 时样本协方差估计的特征值分布 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 
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图表10： Type=3 时样本协方差估计的特征值分布  图表11： Type=4 时样本协方差估计的特征值分布 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 

 

进一步，以 type=1 为例（type2 到 type4 的结论不变），固定资产维度𝑝 = 30，调整观测

长度从 30 到 300，对应的𝑝/𝑛比从 0.1 到 1。考察两种样本协方差估计量相比于真实协方

差矩阵的 F 范数距离和 Sigma 范数距离，结果表明，随着𝑝/𝑛比增加，样本协方差估计量

和真实值的距离呈现放大趋势，换言之，当观测长度越短时，样本协方差估计量误差越大。

对比两种样本协方差构建方式，SampleCov2（有偏估计量）相比于 SampleCov1（无偏

估计量）表现更好，事实上，在压缩算法系列文献中，ledoit&wolf 也是采用有偏的样本协

方差估计量。后文我们统一采用 SampleCov2 作为样本协方差的代表。 

 

图表12： 样本协方差估计量的 F 范数距离  图表13： 样本协方差估计量的 Sigma 范数距离 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 
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稀疏矩阵 

 

本节主要考察 Liu(2014)提出的三种带惩罚系数项的稀疏矩阵估计模型，分别记为

LiuSparseW1、LiuSparseW2 和 LiuSparseW3，这三种模型唯一的区别在于惩罚系数矩

阵𝑊不同，分别是𝑊𝑗𝑘 = 1、𝑊𝑗𝑘 = (|𝑆𝑗𝑘| + 1/𝑛)
−1、𝑊𝑗𝑘 = (|Σ̂𝑗𝑘

𝑆𝑇𝑂| + 1/𝑛)−1。 

 

仿照 Liu(2014)的做法，我们生成了三类有代表性的高维稀疏结构协方差矩阵： 

1. toeplitz：矩阵元素以对角线为轴向两边递减，其第 j行第k列的元素值𝜌𝑗𝑘 = 0.75
|𝑗−𝑘|。 

2. block：由 10 个相同的方阵斜对角排列构成，每个方阵的非对角元为 0.8。 

3. band：类似于 toeplitz，但其带宽是 20，第 j 行第 k 列的元素值为 

𝜌𝑗𝑘 = {1 −
|𝑗 − 𝑘|

20
𝑖𝑓 |𝑗 − 𝑘| < 20

0 𝑒𝑠𝑙𝑒

 

 

图表14： toeplitz、block、band 矩阵热力图 

 

资料来源：Wind，华泰证券研究所，Liu(2014) 

 

以 toeplitz 矩阵为例（block、band 矩阵结论不变），固定资产维度𝑝 = 100，调整观察长

度从 100 到 1000，对应𝑝/𝑛从 0.1 到 1，统计稀疏矩估计量相比于样本协方差的平均误差

改善幅度（PRAIL），以及协方差估计量与真实协方差矩阵的 Sigma 范数距离，结论显示，

三种稀疏矩阵估计方法的表现都不如样本协方差。原因很简单，这三类稀疏矩阵估计方法

对样本协方差矩阵的每一个非对角元都进行了软阈值稀疏化处理，所有非对角元素的绝对

值都变成了一个更小的值，使其估计量在数值距离上远离真实协方差矩阵。 

 

图表15： toeplitz 结构下稀疏估计的 PRAIL 相对改善程度  图表16： oeplitz 结构下稀疏估计的 sigma 范数距离 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 

 

更合理的做法是比较协方差估计量是否能还原真实协方差矩阵的稀疏结构。不失一般性地，

设定资产维度𝑝 = 100，观测长度𝑛 = 200，比较三类稀疏矩阵估计量和样本协方差的热力

图，结果显示，稀疏矩阵估计量与模拟数据的真实结构更接近，估计效果更好。 
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图表17： toeplitz 矩阵协方差矩阵估计量热力图 

 

资料来源：Wind，华泰证券研究所 

 

图表18： block 矩阵协方差矩阵估计量热力图 

 

资料来源：Wind，华泰证券研究所 

 

图表19： band 矩阵协方差矩阵估计量热力图 

 

资料来源：Wind，华泰证券研究所 
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因子模型 

 

本节主要考察4种潜在因子（POET）模型，分别记为PoetLiuSparseW1、PoetLiuSparseW2、

PoetLiuSparseW3，PoetDiagSparse，这 4 种 POET 模型唯一的区别在于使用不同的稀

疏矩阵方法估计残差协方差矩阵，前三种使用的是上文介绍的三种稀疏矩阵估计方法，后

一种代表直接将残差协方差阵的非对角元素设置为 0。 

 

为了验证 POET 方法能否达到其理论设计目标，需要生成具有因子结构的模拟数据。本文

参考 Fan(2013)的做法，主要思想是通过回归方程得到具有因子结构的收益率序列。具体

而言，给定因子载荷矩阵𝐵、因子序列𝑓𝑡和残差序列𝑢𝑡，按如下方程生成模拟收益率序列 

𝑦𝑡 = 𝐵𝑓𝑡 + 𝑢𝑡 

Fan(2013)使用 Fama-French 三因子模型对参数𝐵、𝑓𝑡和𝑢𝑡进行较正，其过程较为繁琐，，

有兴趣的读者可以参阅文献。本文直接使用了作者关于因子载荷矩阵𝐵，因子收益率协方

差矩阵Σ𝑓的估计值，并自行生成了具备稀疏结构的残差收益率协方差矩阵Σ𝑢，假设资产收

益率符合多元正态分布，通过随机采样得到最终的模拟数据。 

 

分别固定资产维度𝑝 = 50和100，调整观测长度𝑛，使得对应的𝑝/𝑛比从 0.1 到 1，比较样

本协方差矩阵以及 4 种 POET 估计量与真实协方差矩阵的 sigma 范数距离。结果表明： 

 随着𝑝/𝑛增大，也即资产维度相比于观测长度越来越大时，POET 估计量相比于样本

协方差的提升越明显，换言之，𝑝/𝑛越大，样本协方差越不适用。 

 当𝑝 = 50，𝑝/𝑛比小于 0.2，也即观测长度是资产维度的 5 倍以上时，样本协方差估

计量更精准，这说明在观测长度足够长的情形下，样本协方差已经是一个比较精确的

估计量，引入复杂的协方差估计方法带来的增益有限。 

 当𝑝 = 100时，POET 估计量相比于样本协方差的改善更显著，这是因为模拟数据生

成中，固定包含三个隐含因子，而当资产维度越大时，PCA 方法能提取的信息量更

大，因而估计量越精确。 

 四种 POET 估计量的表现在当前模拟测试场景下并无显著差别，总体而言都能达到其

理论设计目标。 

 

图表20： POET 估计量 sigma 范数距离，资产数量 p=50  图表21： POET 估计量 sigma 范数距离，资产数量 p=100 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 
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压缩算法 

 

本节主要考察基于单位阵、等相关系数矩阵和单指数模型构建的 3 种线性压缩方法和 1 种

非线性压缩方法，分别记为 LsI、LsCORR、LsMARKET、NLsQuEST。 

 

首先考察四种压缩估计量的特征值分布，固定资产维度𝑝 = 30，观测长度𝑛 = 50，在四种

模拟特征值分布下都能得到类似的结论：样本协方差估计量的特征值总是比真实特征值的

分布更发散，也即小的特征值区域存在低估而大的特征值附近存在高估的现象，而压缩估

计量能在很大程度上改善这种发散性，分布上整体更贴近真实特征值。其中，三类线性压

缩算法的表现接近，在 type1 场景下相比样本协方差改善明显，而非线性压缩算法的适用

性更强，尤其在 type2~type4 三种真实特征值分布不那么发散（相邻特征值间隔比较近）

的场景下，非线性压缩算法都表现出较高的估计精度。 

 

图表22： Type=1 时压缩估计量的特征值分布  图表23： Type=2 时压缩估计量的特征值分布 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 

 

图表24： Type=3 时压缩估计量的特征值分布  图表25： Type=4 时压缩估计量的特征值分布 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 
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固定资产维度𝑝 = 30，调整观测长度𝑛，使得对应的𝑝/𝑛比从 0.1 到 1，考察不同 type 模拟

数据下 4 种压缩估计量相比于样本协方差矩阵的平均误差改善幅度（PRIAL）。结果显示： 

1. 随着𝑝/𝑛比的不断增大，压缩估计量相比于样本协方差的改善幅度越来越明显。 

2. 线性压缩算法中，基于常相关系数矩阵构建的压缩估计量（LsCORR）模型在 0.1 到

1 的𝑝/𝑛比值下都有较好的表现，改善程度高达 60%，这是因为模拟数据生成中采用

了对角协方差矩阵，也即各资产间是相互正交的（相关系数均为 0），所以正好适用

于该算法，其结论不具备普适性。 

3. 与上一小节特征值分布的分析结论一致，在 type1 这种特征值比较发散的场景下，线

性压缩算法的表现已经很好；而在 type2~type4三种特征值相对不那么发散的场景下，

非线性压缩的表现整体比线性压缩更优。 

 

图表26： Type=1 时压缩估计的平均误差相对改善 PRIAL（%）   图表27： Type=2 时压缩估计的平均误差相对改善 PRIAL（%） 

 

  

 

资料来源：Wind，华泰证券研究所   资料来源：Wind，华泰证券研究所 

 

图表28： Type=3 时压缩估计的平均误差相对改善 PRIAL（%）  图表29： Type=4 时压缩估计的平均误差相对改善 PRIAL（%） 

 

 

 

资料来源：Wind，华泰证券研究所  资料来源：Wind，华泰证券研究所 
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真实数据实证分析 

 

总结前文内容，我们一共实证了样本协方差、稀疏矩阵、因子模型、压缩估计四大类总计

13 种方法，这些算法在模拟数据实证场景下都达到了其理论设计目标。本节我们将基于

真实的资产收益率数据实证各个算法的表现，评估手段包括特征值组合 B 统计量、最小波

动组合样本外表现、目标波动组合样本外表现三类。 

 

图表30： 不同协方差估计方法 

大类 名称 释义 

样本协方差 SampleCov1 无偏样本协方差估计量 

 SampleCov2 有偏样本协方差估计量 

稀疏矩阵 LiuSparseW1 惩罚系数矩阵𝑊𝑗𝑘 = 1 

 LiuSparseW2 惩罚系数矩阵𝑊𝑗𝑘 = (|𝑆𝑗𝑘| + 1/𝑛)
−1 

 LiuSparseW3 惩罚系数矩阵𝑊𝑗𝑘 = (|Σ̂𝑗𝑘
𝑆𝑇𝑂| + 1/𝑛)−1 

因子模型 PoetLiuSparseW1 采用 LiuSparseW1 对残差协方差矩阵稀疏化 

 PoetLiuSparseW2 采用 LiuSparseW2 对残差协方差矩阵稀疏化 

 PoetLiuSparseW3 采用 LiuSparseW3 对残差协方差矩阵稀疏化 

 PoetDiagSparse 直接将残差协方差矩阵的非对角线元素置为零 

压缩估计 LsI 基于样本单位阵的线性压缩模型 

 LsCORR 基于常相关系数阵的线性压缩模型 

 LsMARKET 基于单指数模型的线性压缩模型 

 NLsQuEST 非线性压缩模型 

资料来源：Wind，华泰证券研究所 

 

偏差统计量 

 

偏差统计量是一个评估风险预测准确性的指标，它可以用来衡量组合风险预测值和风险实

际值之间的误差。当偏差统计量约等于 1 时，风险预测的准确性较好；当偏差统计量显著

大于 1 时，风险被低估；当偏差统计量显著小于 1 时，风险被高估。如果资产协方差矩阵

的估计是准确的，那么基于这些资产的任意投资组合的偏差统计量都应该约等于 1，本文

选择了具有代表性的投资组合，也即协方差矩阵的特征向量组合作为评估对象。 

 

本文以股票（200 支）、一级行业（28 个）、大类资产（14 个）2007 年以来的真实数据作

为输入，考察上述所有协方差估计方法下的特征值组合的偏差统计量分布。其中，三类场

景下协方差估计的历史窗口长度分别为 400、60、30，也即𝑝/𝑛比差不多 0.5 左右。结论

表明： 

1. 股票和行业场景下，样本协方差对应的特征向量组合的偏差统计量呈现出发散特征，

较小特征值对应的特征向量组合的偏差统计量超过 1.5，低估了组合风险，而较大特

征值对应的特征向量组合的偏差统计量小于 1，高估了组合风险；而大类资产场景下，

只有最大特征值组合的 B 统计量存在高估，其他特征值组合的风险都被低估，这主要

是因为债券资产的波动很低，只用过去较短时间内的波动率进行预测容易出现低估。 

2. 稀疏算法的改善整体有限，主要是因为真实数据场景下，协方差结构不满足稀疏假设。 

3. POET 方法相比于样本协方差有显著改善，大部分特征向量组合的偏差统计量都压缩

至 1 附近。而且，POET 方法在个股上的表现要显著好于在行业上的表现，这说明个

股收益率数据更符合条件稀疏性的假设，换言之，个股收益率存在共同的驱动因子，

剥离掉这些共性影响因素后，残差收益率符合稀疏化的假设。 

4. 不同压缩算法在不同资产上表现不同，在行业资产上，LsI 模型比 LsMAKET 模型表

现要好，说明行业场景下，单指数模型的假设过于强烈；而在股票上 LsMAKET 模型

比 LsI 模型表现好，说明个股收益率被市场收益率的解释程度更高；LsCORR 模型和

NLsQuEST 模型在行业和股票上表现都不错。 

 

总结而言，大类资产场景下，引入复杂的协方差估计方法并不能带来偏差统计量的改善；

行业场景下，基于单位阵的线性压缩算法、非线性压缩算法表现较好；个股场景下，POET

方法、基于单指数模型的线性压缩算法、非线性压缩算法表现较好。 
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图表31： 特征向量组合偏差统计量（14 个大类资产） 

 

资料来源：Wind，华泰证券研究所 

 

图表32： 特征向量组合偏差统计量（28 个一级行业） 

 

资料来源：Wind，华泰证券研究所 

 

图表33： 特征向量组合偏差统计量（200 支股票） 

 

资料来源：Wind，华泰证券研究所 
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最小波动组合样本外表现 

 

采用 2007 年以来股票、一级行业、大类资产的真实收盘价作为输入，每月末基于指定窗

宽的历史数据计算各类协方差估计量，进而基于优化模型求解最低波动组合对应的权重，

构建投资组合，最后考察整个回测区间内组合的年化波动率来评估协方差估计量的优劣。

理论上，当协方差估计量越精确时，资产间的相关性刻画越贴近真实情形，构建的最低波

动组合的全局年化波动率也应该越小。实证过程中有如下细节需要说明： 

1. 无论采用何种协方差估计量，组合优化过程中，始终保持权重和为 1 的约束，对于是

否加入卖空约束，我们分别作了实证。 

2. 为了更全面的展示不同资产维度下各个估计算法的优劣，针对股票资产输入，我们实

证了 50 支、100 支、200 支三种典型场景。 

3. 对比不同窗宽的影响时，将回测曲线进行截断对齐后再计算组合年化波动率，确保不

同窗宽下回测结果的可比性。 

 

图表 34~38 展示了各类测试场景下组合的年化波动率，如果复杂协方差估计量相比于样本

协方差有改善，则数值用红色标注。结果表明： 

1. 无卖空约束下，各类复杂协方差估计方法相比于样本协方差的提升更明显。

Jagannathan(2003)指出，在优化模型里添加卖空约束等价于对协方差矩阵进行某种

特殊的压缩，因此，添加卖空约束无法真实的评估各类协方差估计量的精准性。下文

分析中，我们主要以无卖空约束场景为例，对比各算法的优劣。 

2. 随着观察窗口长度提升，样本协方差的估计精度也在提升，各类复杂协方差估计方法

的优势则不断减弱。 

3. 大类资产场景下，仅在观察窗宽为 20 时，样本协方差估计量误差较大，部分稀疏算

法和线性压缩算法体现出一定的优势，而当窗宽增加时，样本协方差已经是一个较优

估计量，引入复杂的协方差估计方法带来的增益有限，甚至还略有下滑。 

4. 一级行业场景下，POET 方法和各类压缩方法都有一定的改善。其中，POET 方法内

PoetLiuSparseW1（惩罚系数矩阵𝑊是全 1 矩阵）的表现最好；压缩算法内基于常相

关系数矩阵构建的线性压缩模型表现最好。相较而言，压缩方法的表现要整体好于

POET 方法。 

5. 股票场景下，同样是 POET 方法和压缩算法的表现更好。其中，POET 方法内

PoetLiuSparseW1（惩罚系数矩阵𝑊是全 1 矩阵）整体表现更好；压缩算法内基于单

指数模型构建的线性压缩模型整体表现更好；上述两种子算法的优势在股票资产维度

增多时表现更显著。此外，不同于行业上压缩类算法的整体表现要强于 POET 方法，

股票场景下两类算法的表现互有强弱，尤其是当资产维度较高而窗宽较小时，POET

方法的表现较好。 

 

图表34： 最小波动组合年化波动率对比，14 个大类资产（单位：%） 

限制 

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 20 1.37 1.20 1.26 1.21 1.75 1.60 1.69 1.72 3.43 1.22 1.25 1.99 

60 0.86 1.06 1.15 1.12 1.31 1.08 1.20 1.24 2.02 1.06 1.03 1.23 

100 0.81 1.01 1.02 1.10 1.25 1.08 1.15 1.22 1.75 1.00 0.96 1.05 

150 0.78 0.99 1.05 0.96 1.24 1.05 1.15 1.22 1.62 0.95 0.91 0.97 

是 20 1.29 1.27 1.29 1.28 1.31 1.29 1.30 1.30 3.37 1.22 1.25 1.78 

60 1.16 1.21 1.22 1.21 1.21 1.17 1.19 1.20 2.04 1.16 1.16 1.26 

100 1.14 1.18 1.20 1.18 1.19 1.15 1.17 1.18 1.76 1.14 1.14 1.19 

150 1.13 1.17 1.19 1.17 1.18 1.15 1.17 1.18 1.63 1.13 1.13 1.16 

资料来源：Wind，华泰证券研究所 
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图表35： 最小波动组合年化波动率对比，28 个行业（单位：%） 

 

 

s 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 60 25.65 23.53 24.42 25.16 23.03 22.71 22.74 23.00 20.30 21.24 20.74 20.39 

100 22.65 21.82 23.44 23.49 22.15 21.86 22.05 22.06 20.31 20.26 20.70 20.43 

200 21.55 22.28 22.71 22.65 21.97 21.27 22.06 22.03 20.74 20.61 21.05 20.79 

300 21.13 22.08 22.62 22.86 21.85 21.41 21.79 21.75 20.80 20.79 20.93 20.84 

是 60 22.19 22.71 23.33 23.48 22.22 22.22 22.21 22.22 22.27 22.53 22.22 22.24 

100 22.15 22.91 23.38 22.90 22.17 22.16 22.17 22.17 22.18 22.32 22.16 22.16 

200 23.06 23.60 23.53 24.54 23.06 23.05 23.05 23.06 23.05 23.07 23.07 23.06 

300 23.39 23.73 24.36 24.37 23.34 23.40 23.36 23.34 23.37 23.42 23.39 23.38 

资料来源：Wind，华泰证券研究所 

 

图表36： 最小波动组合年化波动率对比，50 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 60 70.76 42.67 43.20 43.60 27.27 27.23 27.24 27.31 28.03 27.36 26.60 26.91 

100 34.33 30.34 33.41 37.00 26.95 27.07 26.94 26.96 27.90 26.62 26.23 26.37 

200 27.85 27.95 28.83 28.41 26.54 26.33 26.55 26.58 26.67 25.66 25.70 25.82 

500 27.21 27.59 28.05 28.08 27.18 27.00 27.36 27.32 26.96 26.08 26.53 26.62 

是 60 27.10 27.52 28.03 27.98 26.63 26.64 26.64 26.65 26.84 26.45 26.62 26.86 

100 26.25 26.90 27.28 27.22 25.96 26.01 25.96 25.97 26.16 25.71 25.92 26.20 

200 25.83 26.83 26.65 26.84 25.68 25.69 25.66 25.68 25.81 25.52 25.63 25.81 

500 26.46 27.49 27.71 27.07 26.35 26.34 26.28 26.32 26.43 26.20 26.39 26.45 

资料来源：Wind，华泰证券研究所 

 

图表37： 最小波动组合年化波动率对比，100 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 120 42.74 30.02 35.59 31.15 20.18 20.20 20.16 20.14 22.46 20.46 19.70 20.04 

200 26.45 25.90 28.92 29.19 20.55 20.69 20.78 20.58 22.63 20.74 20.22 20.36 

400 22.84 23.60 25.22 24.74 21.45 21.27 21.58 21.61 22.06 21.10 20.68 20.76 

500 22.30 23.49 24.37 24.25 22.03 21.81 21.79 21.97 21.87 21.15 20.90 20.97 

是 120 20.70 22.81 25.87 25.04 20.23 20.30 20.28 20.23 20.64 20.27 20.29 20.54 

200 21.10 22.21 23.92 24.10 20.52 20.64 20.54 20.55 21.02 20.88 20.74 20.78 

400 21.67 22.49 23.31 22.97 21.16 21.28 21.26 21.19 21.61 21.49 21.40 21.37 

500 21.86 23.68 23.06 23.31 21.47 21.50 21.47 21.62 21.84 21.66 21.68 21.70 

资料来源：Wind，华泰证券研究所 

 

图表38： 最小波动组合年化波动率对比，200 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 250 37.51 29.02 29.94 33.14 18.82 18.59 18.77 18.75 23.09 19.82 18.45 18.68 

400 23.84 23.05 25.74 32.61 19.56 19.19 19.45 19.52 21.60 19.62 18.53 18.55 

500 22.22 22.83 24.48 24.93 20.27 19.81 20.28 20.15 21.16 19.76 18.89 18.89 

是 250 19.82 22.84 24.92 24.27 19.33 19.31 19.31 19.32 19.77 19.48 19.40 19.66 

400 19.97 22.54 23.35 23.96 19.66 19.73 19.73 19.64 19.95 19.74 19.67 19.88 

500 20.07 21.57 23.34 22.78 19.79 19.74 19.74 19.76 20.07 19.85 19.82 20.03 

资料来源：Wind，华泰证券研究所 
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目标波动组合样本外表现 

 

采用与最低波动组合相同的实证思路，我们同样测试了目标波动组合的样本外表现。该测

试场景对结构化产品设计具有较高的实用价值，比如一个挂钩目标波动策略的期权产品，

目标波动控制得是否精准直接影响到期权的定价。理论上，当协方差估计量越精确时，目

标组合样本外的波动率与初始设置的目标波动越匹配。不失一般性，设置目标波动为年化

5%，由于各类资产的波动水平不一，优化过程中不能设置权重和为 1 的约束，否则优化

问题可能无法收敛，而对于是否加入卖空约束，我们分别作了实证。 

 

图表 39~43 展示了各类测试场景下组合的年化波动率，如果复杂协方差估计量下，组合的

年化波动率相比于样本协方差更接近 5%，则数值用红色标注。结果表明： 

1. 与最低波动组合中的结论一致，无卖空约束下，各类复杂协方差估计方法相比于样本

协方差的改善更明显；而随着观察窗口长度提升，样本协方差的估计精度也在提升，

各类复杂协方差估计方法的优势则不断减弱。 

2. 大类资产场景下，压缩类算法的改善最为明显。其中，基于单位阵的线性压缩模型表

现最好，基于常相关系数和单指数模型的线性压缩模型则表现一般，主要是因为大类

资产的协方差矩阵不满足后两者的先验假定。 

3. 行业场景下，同样是压缩类算法的改善最为明显。其中，基于常相关系数的线性压缩

模型表现整体更好，而基于单位阵的线性压缩模型在观察窗宽较短时表现较好，随着

窗宽增大，优势减弱。 

4. 股票场景下，POET 方法和线性压缩方法都有显著改善。其中，POET 方法内

PoetLiuSparseW1（惩罚系数矩阵 W 是全 1 矩阵）整体表现更好；压缩算法内基于

常相关系数和单指数模型构建的线性压缩算法显著优于单位阵线性压缩算法，该结论

正好和大类资产场景相反，原因是股票资产的协方差矩阵更满足常相关系数和单指数

模型的假设。 

 

图表39： 目标波动组合年化波动率对比，14 个大类资产（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 20 23.41 11.45 11.09 14.04 30.44 25.59 27.63 29.90 7.41 11.44 12.16 8.30 

60 8.63 8.14 8.49 9.37 13.07 9.78 11.66 12.42 6.10 7.60 7.85 6.64 

100 7.73 7.53 7.95 8.55 11.58 9.16 10.51 10.71 5.60 7.14 7.26 6.42 

150 7.13 7.39 7.40 8.28 10.75 8.27 9.80 10.36 5.20 6.63 6.74 6.16 

是 20 11.10 11.30 11.65 11.85 11.88 11.57 11.79 11.89 6.94 10.42 10.81 6.62 

60 7.46 7.99 8.36 8.65 8.96 8.03 8.45 8.67 5.45 7.37 7.47 5.95 

100 7.00 7.59 7.84 7.89 8.66 7.69 8.25 8.47 5.05 6.99 7.03 6.03 

150 6.67 7.34 7.57 7.94 8.35 7.32 7.88 8.18 4.87 6.65 6.68 5.99 

资料来源：Wind，华泰证券研究所 

 

图表40： 目标波动组合年化波动率对比，28 个行业（单位：%） 

限制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 60 12.01 8.53 11.34 13.69 10.49 10.05 10.39 10.43 7.06 7.79 8.21 7.53 

100 8.76 7.65 8.51 11.73 9.21 8.78 9.18 9.25 6.76 7.01 7.61 7.19 

200 7.20 6.52 8.11 11.19 8.00 7.48 7.94 7.94 6.45 6.42 6.87 6.64 

300 6.83 6.39 7.50 11.47 7.85 7.30 7.82 7.84 6.37 6.34 6.65 6.51 

是 60 5.81 6.82 8.87 9.11 5.80 5.81 5.81 5.81 5.87 5.69 5.80 5.84 

100 5.79 6.45 7.83 9.63 5.78 5.79 5.79 5.79 5.81 5.74 5.80 5.80 

200 5.62 6.71 7.38 9.23 5.62 5.62 5.62 5.62 5.65 5.60 5.63 5.63 

300 5.67 6.55 7.75 11.28 5.67 5.67 5.67 5.67 5.68 5.66 5.67 5.68 

资料来源：Wind，华泰证券研究所 
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图表41： 目标波动组合年化波动率对比，50 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls 

 CORR 

Ls 

MARKET 

NLs 

QuEST 

否 60 51.72 29.50 32.12 48.87 8.67 8.60 8.67 8.70 9.13 7.65 8.07 7.72 

100 13.35 11.96 15.21 21.96 8.20 8.13 8.19 8.23 8.44 7.19 7.65 7.32 

200 8.38 9.40 23.39 11.13 7.72 7.49 7.67 7.69 7.52 6.79 7.14 6.91 

500 6.78 8.72 12.25 10.86 7.62 7.11 7.40 7.51 6.62 6.28 6.50 6.37 

是 60 6.34 9.65 13.79 13.44 6.24 6.25 6.26 6.26 6.53 5.58 6.13 6.45 

100 5.83 8.37 11.11 12.22 5.79 5.79 5.79 5.80 5.97 5.43 5.72 5.96 

200 5.80 8.76 9.09 10.51 5.75 5.75 5.75 5.76 5.88 5.59 5.76 5.91 

500 5.30 7.63 10.43 12.69 5.32 5.31 5.32 5.31 5.34 5.19 5.29 5.35 

资料来源：Wind，华泰证券研究所 

 

图表42： 目标波动组合年化波动率对比，100 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 120 43.76 27.17 33.77 29.48 9.07 8.78 9.01 9.07 10.82 8.08 8.36 8.03 

200 12.87 14.27 22.01 22.42 8.63 8.32 8.55 8.59 9.45 7.56 7.88 7.57 

400 8.25 12.31 14.85 25.32 8.38 7.91 8.24 8.25 7.72 6.90 7.14 6.91 

500 7.74 13.64 15.19 12.03 8.38 7.73 7.97 8.02 7.42 6.80 7.05 6.80 

是 120 6.19 11.75 17.85 21.26 6.36 6.25 6.35 6.36 6.28 5.58 6.12 6.32 

200 5.97 10.57 15.34 14.40 6.13 6.09 6.11 6.13 6.04 5.56 5.96 6.09 

400 5.82 10.96 16.01 12.95 6.10 6.05 6.06 6.08 5.85 5.60 5.85 5.87 

500 5.70 11.97 10.63 13.18 5.95 5.84 5.89 5.92 5.72 5.52 5.73 5.72 

资料来源：Wind，华泰证券研究所 

 

图表43： 目标波动组合年化波动率对比，200 只股票（单位：%） 

限 制

卖空 窗宽 

Sample 

Cov 

Liu 

SparseW1 

Liu 

SparseW2 

Liu 

SparseW3 

PoetDiag 

Sparse 

PoetLiu 

SparseW1 

PoetLiu 

SparseW2 

PoetLiu 

SparseW3 LsI 

Ls  

CORR 

Ls 

MARKET 

NLs 

QuEST 

否 250 32.58 27.68 40.14 39.03 10.61 9.99 10.47 10.49 13.34 8.64 9.00 8.48 

400 12.72 18.51 27.87 26.29 9.92 9.04 9.83 10.62 10.47 7.93 8.23 7.82 

500 10.64 20.93 45.57 18.53 9.76 9.09 9.30 9.55 9.56 7.68 7.95 7.54 

是 250 6.14 20.84 29.25 28.56 29.83 6.23 26.28 28.06 6.19 5.68 6.18 6.25 

400 5.99 20.33 27.87 21.17 6.11 6.07 6.11 6.10 6.03 5.68 8.73 6.04 

500 5.84 18.55 17.90 25.55 5.96 5.92 5.92 5.93 5.87 5.62 5.91 15.35 

资料来源：Wind，华泰证券研究所 
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总结与展望 

 

本文实证了样本协方差、稀疏矩阵、因子模型、压缩算法在内的多种协方差估计方法，对

于投资组合构建和风险预测提出了一些有实操意义的结论。 

 

什么情况下需要引入更高阶的协方差估计方法？在多元正态分布的假设下，样本协方差是

真实协方差矩阵的渐进、无偏估计量，当观测样本足够长时，样本协方差会收敛到真实协

方差矩阵；只有当观测长度𝑛相比于资产维度𝑝不够时（𝑝/𝑛较大），才需要引入更高阶的协

方差估计方法。实证结果表明，当𝑝/𝑛 < 0.1时，样本协方差已经是一个较为精确的估计量，

此时引入复杂协方差估计方法带来的增益有限；当0.1 < 𝑝/𝑛 < 1时，复杂协方差估计方法

会体现出一定的改善，而且这种改善会随着𝑝/𝑛比提升而愈发明显；当𝑝/𝑛 > 1时，样本协

方差矩阵不满秩，无法在真实场景中应用，而因子模型、压缩估计等高阶方法仍然能保证

协方差估计量的正定性，适用范围更广。 

 

稀疏矩阵方法适用于什么场景？稀疏矩阵方法假设真实协方差矩阵具有稀疏结构，也即非

对角线元素大部分为零。该假设在真实应用场景下过于强烈，尤其是行业和个股场景，各

资产波动水平相仿，协方差矩阵各元素大小是可比的。所以该方法的适用范围相对受限，

只有在𝑝/𝑛较大时相比于样本协方差有一定的改善，而且这种改善主要是因为样本协方差

的估计误差较大，并非稀疏估计量本身有多精确。 

 

POET 方法适用于什么场景？POET 方法建立在条件稀疏性假设之上，也即假定各资产收

益率背后受到共同的驱动因素影响，在剥离掉这些共性因素后，残差协方差矩阵是稀疏的。

显然，该方法在大类资产场景下使用相对受限，因为大类资产间较难找到显著的共性驱动

因素，而行业和个股场景下，市场的涨跌本就是最大的解释变量，所以适用性较强，尤其

是个股场景下，资产维度较多，PCA 算法提取的主成分信息量较大，条件稀疏性的假设更

容易满足。同时，实证结果表明，三种不同的惩罚系数矩阵构建方式下，最简单的全 1 矩

阵往往是表现最稳健的。 

 

压缩算法适用于什么场景？压缩算法的适用性最广，大类资产、行业、股票场景下均有一

定改善。实证结果表明，非线性压缩算法实现复杂度较高，运行效率很低，而且改善程度

上相比于线性压缩并没有质的提升，所以我们主要考察逻辑更直观的线性压缩算法。其中，

单位阵线性压缩算法的核心目的就是将较小的特征值拉升，将较大的特征值压缩；常相关

系数模型的先验假设是认为各资产间的相关系数比较接近；单指数模型的先验假设是资产

收益率同受到市场收益率的驱动。最终结果显示，大类资产场景下，资产收益率难以满足

常相关系数和单指数模型的假设，所以最简单的单位阵线性压缩模型最有效；行业场景下，

常相关系数线性压缩模型表现最好；股票场景下，单指数模型的假设最容易满足，基于该

模型构建的线性压缩算法表现也最好，而常相关系数模型的表现也不错。 

 

图表44： 不同协方差估计方法的适用性分析 

 组合构建方式 稀疏类算法 POET 方法 压缩类算法 

大类资产 最低波动组合 仅𝑝/𝑛较大时适用 不适用 仅𝑝/𝑛较大时适用 

 目标波动组合 仅𝑝/𝑛较大时适用 不适用 适用 

一级行业 最低波动组合 仅𝑝/𝑛较大时适用 仅𝑝/𝑛较大时适用 适用 

 目标波动组合 仅𝑝/𝑛较大时适用 仅𝑝/𝑛较大时适用 适用 

股票 最低波动组合 仅𝑝/𝑛较大时适用 适用 适用 

 目标波动组合 仅𝑝/𝑛较大时适用 适用 适用 

资料来源：华泰证券研究所 

 

需要说明的是，本文实证的各类算法都属于无条件协方差估计方法，他们都假定每期的观

测样本之间是独立同分布的，而没有考虑到资产收益率间的自相关性，后续报告中，我们

将聚焦于条件协方差估计方法，一方面引入时序模型来充分利用前期信息，另一方面会实

证多方法融合能否带来组合风险估计的改善。 
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风险提示 

 

模型根据历史规律总结，历史规律可能失效。报告中涉及到的具体资产、股票不代表任何

投资意见，请投资者谨慎、理性地看待。 
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